Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Example 1:
Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
DP。O(n^3)
定义: dp[i][j] 为最多允许交易i次,从0~j天,你可能获得的最大利润。
初始化:第一行都为0(不允许交易),第一列都为0(只有一天不能卖)
递推公式:dp[i][j] = max(dp[i][j - 1], prices[j] - prices[m] + T[I - 1][m]),对所有在[0, j]的m。
解释:每一步,要么不卖股票(dp[i][j - 1]。 要么卖股票,而且这次卖的股票是从第m天买的,那么m天它的操作维度要让操作次数下降一级)。因为允许交易次数是从0开始不断向上刷新到k的,所以正确性有所保证。
优化:
1.解决MLE。当k很大的时候为了节省空间,使用滚动数组。毕竟每次只依赖前一行的信息。
2.解决TLE。当k远大于天数的时候,开那么大的数组刷新出下面很多行一样的数据就没意义了,退化回问题II,上升区间段都计入最终利润。
实现:
class Solution { public int maxProfit(int k, int[] prices) { if (prices == null || prices.length == 0) { return 0; } // P2: 解决TLE。当k远大于天数的时候,开那么大的数组刷新出下面很多行一样的数据就没意义了,退化回问题II。 if (k > prices.length) { return quickSolve(prices); } // P1: 解决MLE。当k很大的时候为了空间也可以用滚动数组。毕竟每次只依赖前一行的信息。 // int[][] dp = new int[k + 1][prices.length + 1]; int[][] dp = new int[2][prices.length + 1]; for (int j = 0; j < dp[0].length; j++) { dp[0][j] = 0; } for (int i = 0; i < dp.length; i++) { dp[i][0] = 0; } for (int i = 1; i <= k; i++) { for (int j = 1; j < dp[0].length; j++) { dp[i % 2][j] = Math.max(dp[i % 2][j], dp[i % 2][j - 1]); for (int m = 1; m <= j; m++) { dp[i % 2][j] = Math.max(dp[i % 2][j], prices[j - 1] - prices[m - 1] + dp[(i - 1) % 2][m]); } } } return dp[k % 2][dp[0].length - 1]; } private int quickSolve(int[] prices) { int profit = 0; for (int i = 1; i < prices.length; i++) { if (prices[i] > prices[i - 1]) { profit += prices[i] - prices[i - 1]; } } return profit; } }