机器学习算法整理
K近邻
算法思想
一个样本与数据集中的k个样本最相似, 如果这k个样本中的大多数属于某一个类别, 则该样本也属于这个类别。
K值减小就意味着整体模型变复杂,分的不清楚,就容易发生过拟合。
流程:
1) 计算已知类别数据集中的点与当前点之间的距离
2) 按距离递增次序排序
3) 选取与当前点距离最小的k个点
4) 统计前k个点所在的类别出现的频率
5) 返回前k个点出现频率最高的类别作为当前点的预测分类
优点:
- 简单有效
- 重新训练代价低
- 算法复杂度低
- 适合类域交叉样本
- 适用大样本自动分类
缺点:
- 惰性学习
- 类别分类不标准化
- 输出可解释性不强
- 不均衡性
- 计算量较大
适用场景:
通常最近邻分类器使用于特征与目标类之间的关系为比较复杂的数字类型,或者说二者关系难以理解,但是相似类间特征总是相似。数据要求归一化,统一各个特征的量纲。
例子:
import math
movie_data = {"宝贝当家": [45, 2, 9, "喜剧片"],
"美人鱼": [21, 17, 5, "喜剧片"],
"澳门风云3": [54, 9, 11, "喜剧片"],
"功夫熊猫3": [39, 0, 31, "喜剧片"],
"谍影重重": [5, 2, 57, "动作片"],
"叶问3": [3, 2, 65, "动作片"],
"伦敦陷落": [2, 3, 55, "动作片"],
"我的特工爷爷": [6, 4, 21, "动作片"],
"奔爱": [7, 46, 4, "爱情片"],
"夜孔雀": [9, 39, 8, "爱情片"],
"代理情人": [9, 38, 2, "爱情片"],
"新步步惊心": [8, 34, 17, "爱情片"]}
# 测试样本 唐人街探案": [23, 3, 17, "?片"]
#下面为求与数据集中所有数据的距离代码:
x = [23, 3, 17]
KNN = []
for key, v in movie_data.items():
d = math.sqrt((x[0] - v[0]) ** 2 + (x[1] - v[1]) ** 2 + (x[2] - v[2]) ** 2)
KNN.append([key, round(d, 2)])
# 输出所用电影到 唐人街探案的距离
print(KNN)
#按照距离大小进行递增排序
KNN.sort(key=lambda dis: dis[1])
#选取距离最小的k个样本,这里取k=5;
KNN=KNN[:5]
print(KNN)
#确定前k个样本所在类别出现的频率,并输出出现频率最高的类别
labels = {"喜剧片":0,"动作片":0,"爱情片":0}
for s in KNN:
label = movie_data[s[0]]
labels[label[3]] += 1
labels =sorted(labels.items(),key=lambda l: l[1],reverse=True)
print(labels,labels[0][0],sep='
')
决策树
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。
决策树算法的核心是要解决提出的两个问题:
1)如何从数据表中找出最佳节点和最佳分枝?
2)如何让决策树停止生长,防止过拟合?
为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心大多是围绕在对某个不纯度相关指标的最优化上。
不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是说,在同一棵决策树上,叶子节点的不纯度一定是最低的。
Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:
1)输入”entropy“,使用信息熵(Entropy)
2)输入”gini“,使用基尼系数(Gini Impurity)
其中t代表给定的节点,i代表标签的任意分类, 代表标签分类i在节点t上所占的比例。注意,当使用信息熵时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。
比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往比较好。当然,这不是绝对的。
到这里,决策树的基本流程其实可以简单概括如下:
直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长。
顺便一说,最擅长月亮型数据的是最近邻算法,RBF支持向量机和高斯过程;最擅长环形数据的是最近邻算法和高斯过程;最擅长对半分的数据的是朴素贝叶斯,神经网络和随机森林。
参考文档: 【菜菜的sklearn】01 决策树