zoukankan      html  css  js  c++  java
  • hihocoder1241 Best Route in a Grid

    题目链接:hihocoder 1241

    题意:

    n*n的格阵,每个方格内有一个数字.蚂蚁从左上角走到右下角,数字是零的方格不能走,只能向右向下走.蚂蚁走的路径上全部方格的的乘积为s,要使s低位0的个数尽量少.问,最少s的末尾包含几个0.

    分析:

    10=2*5,所以只要统计蚂蚁路径上2的个数和5的个数,二者之中的较小者即为s末尾0的个数.

    假设2的个数为x,5的个数为y.

    对于路径(x,y),答案是min(x,y). 

    "路径(p,q)比路径(x,y)好"的充要条件"min(p,q)<min(x,y)".

    最优路径(x,y)中x为最小值或者y为最小值.

    这个问题可以进行延伸:将路径上数字的乘积用k进制来表示,使得末尾0的个数尽量少.对k进行因子分解,当k是若干个质数的乘积时,k=p1*p2*p3*p4...,对于每一个pi进行一次动归.当上边的主键等于左边时,就应该比较剩余的值,有点不好整了,还是两个质数之积比较简单.当k=p1^m1*p2^m2......时,又该怎么做呢?

    代码:

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<algorithm>
     4 #include<queue>
     5 #include<math.h>
     6 #include<string.h>
     7 #include<stdlib.h>
     8 using namespace std;
     9 typedef long long ll;
    10 typedef unsigned long long ull;
    11 #define re(i,n) for(int i=0;i<n;i++)   
    12 int n;
    13 const int maxn = 1007;
    14 int a[maxn][maxn];
    15 int two[maxn][maxn], five[maxn][maxn];
    16 int s[maxn][maxn][2];
    17 void go(int c[maxn][maxn], int x){ 
    18     for (int i = 1; i <= n; i++){
    19         for (int j = 1; j <= n; j++){
    20             if (a[i][j] == 0){
    21                 c[i][j] = 1e6; continue;
    22             }
    23             int cnt = 0;
    24             for (int k = a[i][j]; k%x == 0; k /= x)cnt++;
    25             c[i][j] = cnt;
    26         }
    27     }
    28 }
    29 void work(int c[maxn][maxn], int cc[maxn][maxn]){
    30     re(i, n + 1)s[0][i][0] = s[0][i][1] = s[i][0][0] = s[i][0][1] = 1e6;
    31     s[0][1][0] = s[0][1][1] = s[1][0][0] = s[1][0][1] = 0;
    32     for (int i = 1; i <= n; i++){
    33         for (int j = 1; j <= n; j++){
    34             if (s[i - 1][j][0] == s[i][j - 1][0]){
    35                 s[i][j][0] = c[i][j] + s[i][j - 1][0];
    36                 s[i][j][1] = cc[i][j]+min(s[i][j - 1][1], s[i - 1][j][1]);
    37             }
    38             else if (s[i - 1][j][0]< s[i][j - 1][0]){
    39                 s[i][j][0] = s[i - 1][j][0] + c[i][j];
    40                 s[i][j][1] = s[i - 1][j][1] + cc[i][j];
    41             }
    42             else{
    43                 s[i][j][0] = s[i][j-1][0] + c[i][j];
    44                 s[i][j][1] = s[i][j-1][1] + cc[i][j];
    45             }
    46         }
    47     }
    48 }  
    49 int main(){
    50     freopen("in.txt", "r", stdin);
    51     cin >> n;
    52     re(i, n)re(j, n)scanf("%d", &a[i + 1][j + 1]);
    53     go(two, 2), go(five, 5);  
    54     work(two, five); int p = min(s[n][n][0], s[n][n][1]);
    55     work(five, two); int q = min(s[n][n][0], s[n][n][1]);
    56     cout << min(p, q) << endl;
    57     return 0;
    58 }
  • 相关阅读:
    【Canvas】摆线模拟
    【JS】JS正则表达式常见用法(验证、查找和替换)
    【Canvas】将屏幕坐标系转换成笛卡尔坐标系
    【Canvas】狗撵兔子和贝塞尔曲线
    精妙的SQL和SQL SERVER 与ACCESS、EXCEL的数据导入导出转换
    用Javascript实现HtmlEncode与HtmlDecode的另类方法
    [Javascript] 如何在客户端验证表单被改变
    关于IE6和IE7关闭窗口时提示和不提示以及上传图片前的本地预览解决办法
    项目开发经验谈(一)
    Windows 7 开发新特性
  • 原文地址:https://www.cnblogs.com/weiyinfu/p/4890794.html
Copyright © 2011-2022 走看看